On Construction and a Class of Non-Volterra Cubic Stochastic Operators

نویسنده

  • U. A. Rozikov
چکیده

We give a construction of a cubic stochastic operator (CSO) on a finite dimensional simplex. This construction depends on a probability measure μ which is given on a fixed finite graph G. Using the construction of CSO for μ defined as product of measures given on components of G a wide class of non-Volterra CSOs is described. It is shown that the non-Volterra operators can be reduced to N number (where N is the number of components) of Volterra CSOs defined on the components. By such a reduction we describe behavior of trajectories of a non-Volterra CSO defined on the three dimensional simplex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

A Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type

In this paper, we generalize the Meir-Keeler condensing  operators  via a concept of the class of operators  $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems.  As an application of this extension, we  analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally,  we p...

متن کامل

Linear Lyapunov Functions for Volterra Quadratic Stochastic Operators

We construct a class of linear Lyapunov functions for Volterra quadratic stochastic operator. Using these functions we improve known results about ω-limit set of trajectories of the Volterra quadratic operators.

متن کامل

Wilson wavelets for solving nonlinear stochastic integral equations

A new computational method based on Wilson wavelets is proposed for solving a class of nonlinear stochastic It^{o}-Volterra integral equations. To do this a new stochastic operational matrix of It^{o} integration for Wilson wavelets is obtained. Block pulse functions (BPFs) and collocation method are used to generate a process to forming this matrix. Using these basis functions and their operat...

متن کامل

On Dynamics of Quadratic Stochastic Operators: a Survey

We discuss the notion of Volterra, l-Volterra and separable quadratic stochastic operators defined on (m− 1)-dimensional simplex, where l ∈ {0, 1, ...,m}. The l-Volterra operator is a Volterra operator if and only if l = m. We study the structure of the set of all Volterra and l-Volterra operators and describe their several fixed and periodic points. For m = 2 and m = 3 we describe behavior of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014